Fluid Powered Miniature In-vivo Robots for Minimally Invasive Surgery (mis)
نویسندگان
چکیده
Minimizing the invasiveness of surgery is believed to improve patient outcomes. Bleeding, infection, and pain are major concerns in surgery afflicting patients for decades. Minimally invasive techniques have come into play to reduce these concerns and smooth the evolution of abdominal surgery to a scarless process where nearly all surgeries can be performed without a skin incision. Technology continually advances the frontier of development of novel surgical devices to implement less invasive surgical techniques. Fusion of robotics and Minimally Invasive Surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems such as the da Vinci® Surgical System [Intuitive, 2013] to miniature in-vivo robotics where the entire robot is inserted into the patient's body. However, with miniaturization of surgical robots there comes a trade-off between the size of the robot and its capability. Miniature electric motors have been mostly used in many in-vivo robots as the main means of actuation. Slow actuation, low load capacity, sterilization difficulty, leaking electricity and transferring produced heat to tissues, and high cost are the key limitations of use of electric motors in in-vivo applications. The research described here presents an alternative actuation scheme to overcome these limitations by taking advantage of the inherent high power density of fluidic actuators to develop two different types of in-vivo robotic systems: a robot arm with a multifunctional manipulator for Natural Orifice Transluminal Endoscopic Surgery (NOTES), and a fluidic disposable self-propelling self-steering robot for colonoscopy. To create a fully hydraulically-driven surgical robot, it was first necessary to build new fluidic actuators according to design requirements. Novel miniature linear and rotary actuators were designed and built. These actuators are seal-less, disposable, light, and inexpensive. Additionally, an electro-hydraulic tool-changing manipulator was built in response to the need for frequent tool exchange in NOTES. Bench-top testing was performed for both robotic systems and the results are presented. Future work and conclusions are discussed. iv ACKNOWLEDGMENT
منابع مشابه
The current state of miniature in vivo laparoscopic robotics
Minimally invasive surgery (MIS) reduces patient trauma and shortens recovery time, but also limits the dexterity of the surgeon because degrees of freedom are lost due to the fulcrum effect of the entry incisions. Visual feedback is also limited by the laparoscope, which typically provides two-dimensional feedback and is constrained by the entry incision. Developments within surgical robotics ...
متن کاملKinematic design considerations for minimally invasive surgical robots: an overview.
BACKGROUND Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. METHODS Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kin...
متن کاملIn Silico Investigation of a Surgical Interface for Remote Control of Modular Miniature Robots in Minimally Invasive Surgery
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimall...
متن کاملModeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and energy efficient propulsion sys...
متن کاملA Miniature Robot for Retraction Tasks under Vision Assistance in Minimally Invasive Surgery
Minimally Invasive Surgery (MIS) is one of the main aims of modern medicine. It enables surgery to be performed with a lower number and severity of incisions. Medical robots have been developed worldwide to offer a robotic alternative to traditional medical procedures. New approaches aimed at a substantial decrease of visible scars have been explored, such as Natural Orifice Transluminal Endosc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016